
Journal of Statistical Computation and Simulation, 2015
http://dx.doi.org/10.1080/00949655.2015.1016944

Multi-step adaptive elastic-net: reducing false positives in
high-dimensional variable selection

Nan Xiao and Qing-Song Xu∗

School of Mathematics and Statistics, Central South University, Changsha, People’s Republic of China

(Received 22 August 2014; accepted 5 February 2015)

Regression and variable selection in high-dimensional settings, especially when p � n has been a pop-
ular research topic in statistical machine learning. In recent years, many successful methods have been
developed to tackle this problem. In this paper, we propose the multi-step adaptive elastic-net (MSA-
Enet), a multi-step estimation algorithm built upon adaptive elastic-net regularization. The numerical
study on simulation data and real-world biological data sets have shown that the MSA-Enet method tends
to significantly reduce the number of false-positive variables, while still maintain the estimation accuracy.
By analysing the variables eliminated in each step, more insight could be gained about the structure of
the correlated variable groups. These properties are desirable in many real-world variable selection and
regression problems.
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1. Introduction

In high-dimensional regression problems, the number of variables p is very large, while the the
number of observations n is relatively small, and the least-squares regression will not provide
a good estimation. One of the possible solutions for the weaknesses of ordinary least-squares
estimation is to alter the criterion used to estimate the regression coefficients, utilizing penalties
based on the magnitudes of the coefficients in the model. Consider the model

y = Xβ + ε (1)

where yn×1 is the response vector, Xn×p is the design matrix. The parameter of the model is βp×1

and the error is εn×1. A typical regularization framework is

β̂ = arg min
β

‖y − Xβ‖2 + λ1‖β‖p1 + λ2‖β‖p2 . (2)

In the above equation, the notation ‖β‖s means
∑p

i=1 |βi|s. Most popular regularization
methods could be represented by this equation. For example, when p1 = 0, λ2 = 0 gives the best
subset selection, p1 = 2, λ2 = 0 gives ridge regression,[1] and p1 = 1, λ2 = 0 gives the lasso.[2]
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Equation (2) defines the elastic-net [3] when p1 = 1 and p2 = 2. For generalized linear models
(logistic regression, Poisson regression, etc.), their properties are similar to the Gaussian linear
models. For instance, the lasso estimator is defined by penalizing the negative log-likelihood
with the �1-norm in generalized linear models, and the loss functions will also be convex in
most scenarios.[4] Thus, in the following sections, we will only focus on the Gaussian linear
regression setting.

In this paper, we propose a new penalized regression method called multi-step adaptive
elastic-net (MSA-Enet) for reducing the false positives in high-dimensional variable selection
while still maintaining the estimation accuracy. In this section, we will briefly review the related
variable selection methods, and introduce the MSA-Enet method with computational details in
Section 2. We will show several numerical simulation and real-world examples of applying
the MSA-Enet method in high-dimensional variable selection in Section 3. A summary with
discussions and future works is given in Section 4.

1.1. From lasso to elastic-net

When p � n, the estimation of ordinary least-squares will not be unique. Thus, some types of
model complexity regularization is necessary. The lasso [2] penalty expects many regression
coefficients in the model to be zero, and only a small subset of coefficients to be non-zero (the ‘bet
on sparsity’ principle). The lasso estimator uses the �1 penalized least-squares criterion to obtain
a sparse solution:

β̂(lasso) = arg min
β

(‖y − Xβ‖2
2

n
+ λ‖β‖1

)
, (3)

where ‖y − Xβ‖2
2 = ∑n

i=1(yi − (Xβ)i)
2, ‖β‖1 = ∑p

j=1 |βj| and λ ≥ 0 is the tuning parameter
for the penalization. The lasso estimator does automatic variable selection and regression in the
same time, in the sense that β̂j(λ) = 0 for some j’s (depending on the choice of λ). β̂j(λ) could be
treated as a shrunken least-squares estimator. The optimization problem defined in Equation (3)
is convex, which enables efficient computation of the estimator, among which the most famous
algorithms are the least angle regression algorithm [5] (achieve the same time complexity as
ordinary least-squares regression) and the even more efficient coordinate descent algorithm.[6]

However, the lasso procedure is not stable enough when there exists high correlations among
the variables, and lasso tends to arbitrarily choose some important variables and ignore the other
important variables when they have relatively high correlation or group structures. Also, the
lasso estimates the larger non-zero coefficients with asymptotically non-ignorable bias, and
can only performs consistent variable selection when the design matrix satisfies rather strong
conditions.[7] Recognizing some of the weaknesses in lasso estimation, the elastic-net reg-
ularization [3] was proposed as an improved version of the lasso for high-dimensional data.
The elastic-net estimator is defined by

β̂(enet) =
(

1 + λ2

n

){
arg min

β
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ1‖β‖1

}
(4)

The elastic-net penalization is a mixture of the �1 (lasso) and the �2 (ridge) penalties. The �1

part of the elastic-net performs automatic variable selection, while the �2 penalization term
stabilizes the solution paths and, hence, improves the prediction accuracy.

Particularly, when there exists high correlations among variables, the elastic-net can signif-
icantly improve the prediction accuracy and outperforms the lasso. Another advantage of the
elastic-net lies in its property of grouped selection, that is, the ‘grouping effect’. In other words,
a group of highly correlated variables tend to have coefficients of similar magnitude and be
selected in the same time.
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1.2. Adaptive lasso and adaptive elastic-net

Lasso and elastic-net estimates the large non-zero coefficients with asymptotically non-ignorable
bias, to solve this problem, the adaptive lasso [8] was proposed:

β̂(AdaLasso) = arg min
β

‖y − Xβ‖2
2 + λ

p∑
j=1

ŵj|βj|, (5)

where ŵj is a data-driven weighting parameter, which could be estimated by ŵj = (|β̂ ini
j |−γ ), and

γ is a positive constant. β̂ ini is a set of initial parameters, which could be obtained by ordinary
least squares or ridge regression.

The key part of the adaptive lasso procedure is the weight parameter. It enables the adaptive
lasso to perform different amount of shrinkage to different variables, in another word, penal-
ize the smaller coefficients more severely. Naturally, we could introduce the �2 penalty to the
adaptive lasso to obtain the adaptive elastic-net.[9] Adaptive elastic-net could be viewed as
the combination of the elastic-net and the adaptive lasso. We will first compute the elastic-net
estimation β̂(enet) defined before, and then construct the adaptive weights by

ŵj = (|β̂j(enet)|)−γ , j = 1, 2, . . . , p. (6)

where γ is still a positive constant. To obtain the adaptive elastic-net estimate, we will solve the
following optimization problem:

β̂(AdaEnet) =
(

1 + λ2

n

) ⎧⎨
⎩arg min

β
‖y − Xβ‖2

2 + λ2‖β‖2
2 + λ∗

1

p∑
j=1

ŵj|βj|
⎫⎬
⎭ . (7)

The adaptive elastic-net also guarantees the variable selection consistency and asymptotic
normality properties as the adaptive lasso and can deal with the multicollinearity problem by
adding the �2 regularization terms. In numerical studies,[9] the adaptive elastic-net outperforms
the adaptive lasso and elastic-net by prediction accuracy, while still maintaining a high rate of
true positives (should be zero, estimated to zero) and a low rate of false negatives (should be
non-zero, estimated to be zero) for the variables selected.

1.3. Reviews of the �1 and �2 penalty and multi-step estimation

As was discussed in the previous sections, each of the modifications of the penalties was aim-
ing for solving some of the issues in the earlier regularization methods. Actually, there exists
three fundamental issues with the defined penalties, that is, the biased estimation, fail for
multicollinearity, and no false-positive control.

The first two issues were addressed in detail in the previous sections. To solve the issues, the
desirable penalties should have adaptive weights in the �1 regularization terms. Furthermore, we
usually add the �2 regularization to the model to stabilize the estimation and maintain the predic-
tion accuracy. Also, the �2 penalty helps to retain all the important variables that are correlated,
avoiding the reckless elimination of important variables.

In practice, the lasso or elastic-net regularization usually obtains a too large model which
contains the true model with high probability. To achieve more sparsity, we usually want to do
additional steps which aims to go from the lasso or elastic-net estimated model in the first stage
to the true model in more stages. The use of multi-step estimation instead of one-step estimation
contributes to the better false-positive control for the variable selection procedures.
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2. The multi-step adaptive elastic-net

For regularization in high-dimensional spaces, we may want to use more than one or two regu-
larization, while still maintaining the estimation accuracy and dealing with the multicollinearity.
This can be achieved by pursuing more iteration steps where every step uses separate tuning
parameters. Naturally, we obtain the MSA-Enet. It could be regarded as the multi-stage version
of the adaptive elastic-net.

2.1. The method

The MSA-Enet method is described as follows:

(1) Initialize the adaptive weights wj ≡ 1(j = 1, 2, . . . , p).
(2) For k = 1, 2 . . . , M :

Use the adaptive elastic-net estimation with the penalty function

λ
∗(k)
2 ‖β‖2

2 + λ
∗(k)
1

p∑
j=1

w(k−1)
j |βj|, (8)

where λ
∗(k)
2 and λ

∗(k)
1 are the regularization parameters leading to prediction optimality. Denote

the estimator by β̂(k) = β̂(k)(λ
∗(k)
2 , λ∗(k)

1 ). In practice, the value λ
∗(k)
2 and λ

∗(k)
1 can be determined

by cross-validation.
Update the adaptive weights:

w(k)
j = 1

|β̂(k−1)(λ
∗(k−1)
1 )j|

, j = 1, 2, . . . , p. (9)

For k = 1 (one-stage), it equals to the normal elastic-net estimation, and k = 2 (two-stage)
corresponds to the adaptive elastic-net estimation.

As a reminder, in practice, each step’s parameter λ
(k)
1 and λ

(k)
2 could be transformed to an

equivalent form λ∗(k) and α(k),[3] where α(k) could be treated as a weighting parameter between
the �1 and �2 regularization.

2.2. Relation to concave penalization methods

In fact, MSA-Enet is inspired by and naturally close related to approximating a non-convex
optimization with a concave penalty function p(·):

β̂ = arg min
β

⎛
⎝‖Y − Xβ‖2

2

n
+

p∑
j=1

p(βj) + ‖β‖2
2

⎞
⎠ . (10)

Actually, p(βj) is a concave penalty function which possibly involves one or more tuning
parameters. An example is the smoothly clipped absolute deviation (SCAD) with additional �2

penalization estimator previously proposed by Zeng and Xie [10], Becker et al., [11] it is defined
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as follows, for α > 2:

β̂(SCAD−�2) = arg min
β

⎛
⎝‖Y − Xβ‖2

2

n
+

p∑
j=1

pλ1,α(βj) + λ2‖β‖2
2

⎞
⎠ . (11)

where pλ1,α(θ) is the SCAD penalty function. The function is defined as

pλ,α(θ) =

⎧⎪⎨
⎪⎩

λ|θ |, |θ | ≤ λ,

− (θ2−2αλ|θ |+λ2)

[2(α−1)] , λ < |θ | < αλ,
(α+1)λ2

2 |θ | > αλ

where θ ∈ R, λ ≥ 0 and the constant α could be determined by some cross-validation procedures
and was previously chosen as α = 3.7 as suggested by Zeng and Xie [10] and Fan and Li.[12]

The SCAD-�2 penalty function is non-differentiable at zero and non-convex. It was proposed
in [10] to use the first derivative of fλ1,λ2(·) to approximate βj (non-zero) by a linear function:

[pλ1,λ2(|βj|)]′ = p′
λ1,λ2

(|βj|)sign(βj) ≈
[

pλ1,λ2(|β(0)
j |)

β
(0)
j

]
βj. (12)

The local linear approximation (LLA) algorithm was proposed in [13] to be used to solve the
estimation problem. In fact, LLA transforms the non-convex penalization problems into a series
of reweighed �1 penalization problems. Instead of using local quadratic approximation like [10]
did, here we use LLA to obtain the SCAD-�2 estimator

pλ1,λ2 ≈ pλ1,λ2(|β(0)
j |) + p′

λ1,λ2
(|β(0)

j |)(|βj| − |β(0)
j |) for βj ≈ β

(0)
j . (13)

For SCAD with �2 penalty, the iterative LLA for computing the SCAD-�2 penalized estimator
is related to the MSA-Enet procedure at this point. In the kth iteration of the LLA,

β̂[k] = arg min
β

⎛
⎝‖Y − Xβ‖2

2

n
+

p∑
j=1

wj|βj| + ‖β‖2
2

⎞
⎠ , w[k−1]

j = |p′
λ1,λ2,α(β̂

[k−1]
j )|. (14)

The solution for SCAD-�2 estimator is similar to the weight updating procedure in multi-step
adaptive elastic-net, except that the tuning parameter λ1 and λ2 do not depend on the itera-
tion. However, solving the optimization problem for MSA-Enet is much easier than solving the
SCAD-�2 optimization problem, since the off-the-shelf algorithms designed for the elastic-net
estimator, like coordinate descent algorithms, can be directly applied and there is no efforts
required to modify the underlying optimization algorithm.

2.3. Computational complexity

There have been proposed many algorithms to compute the elastic-net optimization prob-
lem, some of the algorithms requires to compute the whole solution path, i.e. the LARS-EN
algorithm,[3] and some are more general and does not require the solution for the whole path,
i.e. the coordinate descent.[6] Luckily, we could use these optimization algorithms directly for
the computation of MSA-Enet, with only a little wrapping efforts. Let the time complexity of
the base algorithms be O(f (·)), then the MSA-Enet only requires O(Mf (·)), where the M is the
iteration steps. Due to the increase in sparsity, the later steps is much faster to compute than the
early ones, this is desirable in large-scale regression problems.
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3. Numerical studies

In this section, we will demonstrate the efficiency of MSA-Enet by numerical experiments. We
tested the MSA-Enet method on some simulation data and real-world biological data sets. The
computation is mainly done with the R package glmnet.[6] The package implemented the coor-
dinate descent algorithm, which is considered to be the state-of-the-art optimization algorithm
for solving the �1-/�2- regularized regression problems.

3.1. Simulation data

To illustrate the proposed MSA-Enet method, a simulation study is carried out. We use the linear
model defined in Equation (1) with covariates X artificially generated from a multivariate normal
distribution with correlation matrix

∑
i,j = ρ|i−j| (for values of ρ ∈ {0.25, 0.5, 0.75}). Figure 1

shows a visualization for the correlation matrix of variables in X, for different ρ values (only
with 30 variables as a demonstration). Figure 2 shows only the upper correlation matrix and
reordered the matrices with hierarchical clustering algorithms, so that the larger values in the
matrices would have a more compact view. The larger black cell indicates larger correlation
coefficient. The figure in the left shows when ρ = 0.25, the correlation of the variables is not
so large, while the figure in the right (ρ = 0.75) shows the existence of the strong correlations
of the variables, which is suitable for the effective test of �2 regularization. We generated 150
observations, splitting the training/validation set of size 100, and the independent test set is of
size 50.
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Figure 1. Visualization for the correlation matrices of the simulation data for different ρ values (to save space, we only
demonstrate with 30 variables). The larger ρ values generate more correlated variables. (a) ρ = 0.25, (b) ρ = 0.5 and (c)
ρ = 0.75.

(a) (b) (c)

Figure 2. Visualization for the correlation matrices (reordered the matrix with hierarchical clustering and only keep
the upper matrix) of the simulation data for different ρ values (to save space, we only demonstrate with 30 variables).
The larger ρ values generate more correlated variables. (a) ρ = 0.25, (b) ρ = 0.5 and (c) ρ = 0.75.
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The true underlying coefficients β are of the form β = (c, . . . , c, 0, . . . , 0)T with pact non-zero
entries. We carefully chose different c values so the signal-to-noise ratio (SNR) is around 10
considered it more relevant for practical applications than a larger SNR value,[14] in this case,
we set c = {3.5, 1.2}. The number of variables is set to p = 500. We choose the number of active
variables pact ∈ {5, 25}, so the actually useful variable percentage is 1% and 5%, which will yield
sparse models. In each simulation run, a five-fold cross-validation on the training/validation set
is carried out to determine the optimal parameter(s). A total of 100 repeated simulation runs are
used for each parameter setting.

For elastic-net models, we used the weighting parameter α from 0.05 to 0.95, with a step size
of 0.05. For adaptive lasso models, we run ridge regression as the first stage estimate, which is
more numerically stable than ordinary least squares. For each adaptive and multi-step models,
we set the updated weights to be |β(·)|(−γ ), γ = 1, instead of choosing a γ from {0.5, 1, 2} as [9]
suggested. As the experiment result shows, this parameter does not have a unignorable influence
to the estimation. To make the comparison more fair, we manually assigned the identical random
number seed and generate the fold ID for each observation, to get identical cross-validation
schemes for all the five types of regression models. For the record, all the regression models with
adaptive or multi-step regularization shares the same training/validation sets in each step, this
design strictly avoids introducing extra information of the training data in the extra estimation
steps while doing cross validation.

As performance measures, we use the mean-squared error (MSE): ‖ŷ − y‖2
2/ny, and the num-

ber of false-positive (FP) variables:
∑p

j=1 I(β̂j �= 0, βj = 0). After 100 repeated runs, we got the
mean and standard deviation for the 100 MSEs and the mean and standard deviation for the
number of FP variables.

Table 1 shows the results for the case pact = 5. We used only one more step than the adaptive
elastic-net in the MSA-Enet models, which means the estimation will be more sparse if we add
more steps. We could make several conclusions from the results. Firstly, the adaptive/multi-
step estimation substantially improves the prediction accuracy compared to the normal lasso or
elastic-net. Secondly, the number of false positives could be largely reduced in the multi-step
estimation. In all of the ρ values here, it proves that the multi-step adaptive elastic-net method
could accurately eliminate all the FP variables, that is, the true variables in the models are always
identified, no matter the correlation of the variables is high or not. Finally, the MSA-Enet method
have the lower MSEs than adaptive elastic-net when the correlation between variables is smaller,
which means the additional steps for the adaptive elastic-net could even improve the prediction
accuracy.

Table 1. Simulation results when pact = 5.

ρ = 0.25 ρ = 0.5 ρ = 0.75

Model Mean (SD) Mean (SD) Mean (SD)

MSE
Lasso 1.6270 (0.0203) 1.0302 (0.0107) 1.0991 (0.0283)
Elastic-Net 1.6448 (0.0223) 1.0338 (0.0114) 1.1013 (0.0262)
AdaLasso 1.1904 (0.0263) 0.9109 (0) 0.9036 (0)
AdaEnet 1.0582 (0.0002) 0.9489 (0.0001) 0.9043 (0.0005)
MSA-Enet 1.0564 (0) 0.9519 (0) 0.9034 (0.0004)

FP variables
Lasso 22.41 (6.85) 4.74 (2.65) 5.95 (4.57)
Elastic-Net 22.93 (6.75) 4.74 (2.48) 6.27 (4.52)
AdaLasso 2.78 (3.14) 0(0) 0(0)
AdaEnet 0(0) 0(0) 0(0)
MSA-Enet 0(0) 0(0) 0(0)
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Table 2. Simulation results when pact = 25.

ρ = 0.25 ρ = 0.5 ρ = 0.75

Model Mean (SD) Mean (SD) Mean (SD)

MSE
Lasso 22.5525 (0.2254) 2.6446 (0.1842) 2.2700 (0.0510)
Elastic-Net 22.9893 (0.6840) 2.6948 (0.2117) 2.0688 (0.0503)
AdaLasso 20.1986 (1.0165) 1.8039 (0.0023) 1.8149 (0.0000)
AdaEnet 20.7553 (0.5115) 1.5914 (0.0203) 2.6695 (0.1723)
MSA-Enet 21.2292 (0.6889) 1.5890 (0.0173) 4.7021 (0.4170)

FP variables
Lasso 61.81 (12.59) 34.65 (7.88) 23.29 (10.75)
Elastic-Net 66.35 (13.32) 35.57 (7.82) 22.77 (10.31)
AdaLasso 48.98 (8.77) 8.85 (0.61) 0(0)
AdaEnet 22.10 (2.79) 0(0) 0(0)
MSA-Enet 13.51 (1.11) 0(0) 0(0)

The results for pact = 25 are given in Table 2. From the table, we can see that there is a slight
loss in terms of MSE for the setting when doing an additional step for the MSA-Enet, especially
when the correlation among the variables is higher. The performance of reducing FP variables
of the MSA-Enet beat all the other methods in all cases, particularly when ρ = 0.25, and the
standard deviation of this FP performance is much smaller, which means it selects the variables
with more stability. To further improve the prediction accuracy, we may try to add another one
or two steps for the MSA-Enet method, while still maintaining a low FP rate.

In summary, the simulation result shows that the MSA-Enet method controls the false-positive
rate better than the adaptive elastic-net and all other regularization methods. This is a very desir-
able property in the applications which require the lower false-positive rate even at the expense
of slight prediction accuracy loss. The prediction performance of multi-step adaptive elastic-net
is even better than the one-step version (adaptive elastic-net) in some cases, which demonstrates
that the additional regularization step could even improve the prediction accuracy, or at least,
maintain the estimation accuracy.

3.2. Real-world biological data sets

Reducing the number of false positives is often very desirable in biological or biomarker
discovery applications since the follow-up investigations or wet-lab experiments can be costly
and laborious.[15] As a matter of fact, it will be appropriate to do conservative estimation with a
low number of selected variables since we still see more selections than what may be validated
in a laboratory.

3.2.1. The mammalian eye gene expression data.

The data set used here is a gene expression data set (20 genes for 120 samples) from the microar-
ray experiments of mammalian eye tissue samples.[16] The data set contains 120 observations
(n = 120) with 200 variables (p = 200). Both the variables and the response is real-valued. The
goal is to discover the linkage between genes and eye diseases by linear regression. We randomly
split 75% (90 samples) as the training/validation set, and take the other 25% as independent test
set. The five-fold cross-validation also repeated 100 times as before.

As was described in the previous simulation, we also take the average MSE and selected
variables of the 100 experiment runs as the performance measure. The results are given in
Table 3.
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Table 3. Mammalian eye tissue gene expression regression results.

Model MSE Selected variables

Lasso 0.007225 (0.0002663) 22.38 (3.193)
Elastic-Net 0.007560 (0.0003835) 52.99 (24.91)
AdaLasso 0.006594 (0.0001331) 15.04 (0.1970)
AdaEnet 0.007013 (0.0007628) 22.78 (7.390)
MSA-Enet 0.007092 (0.001022) 14.56 (2.801)

Table 4. DNA motif score regression results.

lambda.min lambda.1se

Model MSE Selected Variables MSE Selected variables

Lasso 0.2986 452 0.3351 287
Elastic-Net 0.2797 791 0.3096 631
AdaLasso 0.2755 446 0.3170 265
AdaEnet 0.2598 505 0.2993 313
MSA-Enet 0.2560 431 0.3090 225

From the results in Table 3, the MSA-Enet shows very competitive prediction accuracy with
the adaptive lasso and adaptive elastic-net. Multi-step adaptive elastic-net selected less variables
than adaptive elastic-net due to the additional step (more shrinkage). It also selects more variables
than the adaptive lasso and adaptive elastic-net, which seems to be at a more reasonable number,
in the view of the fact that the lasso usually shrinked the variables too severely that it often
randomly ignore the correlated variables and just picked one. The �2 regularization of MSA-
Enet avoids this problem and usually retains all the important variables by its grouping effect. It
helps us not drop important variables while still maintaining very low false-positive rates. Thus
reduces the amount of further investigation works.

3.2.2. The DNA motif score data.

We applied the MSA-Enet method here on a high-dimensional variable selection problem of
motif regression for finding transcription factor binding sites in DNA sequences. The data set was
used in [17, 18]. The transcription factor binding sites (motifs) are short ‘words’ of DNA base
pairs denoted by {A, C, G, T}. The motif candidates are extracted from computational algorithms
based on DNA sequence data only: for every of the n genes, we have a score for each of the p
candidate motifs which describes the abundance of occurrences of a candidate motif up-stream
for every gene. This yields an n × p matrix X with motif scores for every gene (i.e. rows of X )
and every candidate motif (i.e. columns of X ). Our goal here is to predict the gene expression
value of a gene based on motif scores.

The data set has p = 2155 motif scores (variables), and the number of genes (sample size)
is n = 4443. We randomly splitted the data and take 75% (3332 observations) as the train-
ing/validation set, 25% (1111 observations) as the independent test set. In this case, we only
run once instead of 100 times of the five-fold cross-validation. The results are given in Table 4.
The lambda.min rule of the glmnet package selects the λ value that makes the minimal pre-
diction error, but this usually means more selected variables. As a improvement, we utilized the
lambda.1se rule as the criterion for the selection of λ. This rule means a heuristic choice of
λ producing a less complex model, for which the performance in terms of estimated expected
generalization error is within one standard error of the minimum. It yields that this rule gives a
much more reasonable and acceptable number of selected variables (about 100–200 variables).
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Table 4 shows very similar results as the previous example. The multi-step adaptive elastic-net
method shows very close prediction accuracy with the adaptive lasso and adaptive elastic-net.
The MSA-Enet selected less variables than adaptive elastic-net due to the additional step (more
shrinkage). In the same time, MSA-Enet reasonably keeps less correlated variables than the
adaptive lasso and adaptive elastic-net, which provides us the chance to further investigate the
variables selected and eliminated in each step.

4. Conclusion and future works

The numerical study on simulation data and real-world biology data sets have shown that the
MSA-Enet methods tends to significantly reduce the number of false-positive variables, while
still maintain the estimation accuracy, which is a desirable property in many real-world variable
selection and regression problems. The MSA-Enet is safer than lasso and adaptive lasso, by
introducing the �2 regularization, we could avoid the reckless elimination of important variables
that are correlated, while still obtain much less false positives than adaptive elastic-net.

Sometimes it is a trade-off between MSA-Enet and adaptive elastic-net at prediction accuracy
and false-positive control, and thus provides us more insight on further investigating the corre-
lated variables. Furthermore, it should be noted that by analysing the variables eliminated in each
step, more insight could be gained about the structure of the correlated variable groups. Other
than the grouping effect provided by (adaptive) elastic-net, some more variable groups could be
identified in each iteration step, which could be beneficial for exploring the real-world variable
selection problems.

In the future, it is a potential direction for us to try different penalty functions proved to be
useful in the one-step estimation procedures, like the MNet penalty [19] and the weight fused
elastic-net penalty [20, 21] for dealing with highly correlated variables in high-dimensional
regression problems.
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