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Lipophilicity, evaluated by either n-octanol/water partition coefficient or n-octanol/buffer solution distribution coef-
ficient, is of high importance in pharmacology, toxicology, and medicinal chemistry. A quantitative structure-
property relationship study was carried out to predict distribution coefficients at pH7.4 (logD, 4) of a large data
set consisting of 1130 organic compounds. Partial least squares and support vector machine (SVM) regressions were
employed to build prediction models with 30 molecular descriptors selected by genetic algorithm. The obtained re-
sults demonstrated that the SVM model is more reliable and has a better prediction performance than the partial
least squares model. The square correlation coefficients of fitting, cross validation, and prediction are 0.92, 0.90,
and 0.89, respectively. The corresponding root mean square errors are 0.52, 0.59, and 0.56, respectively. The robust-
ness, reliability, and generalization ability of the model were assessed by Y-randomization test and applicability do-
main. When compared with logD;, values calculated by five existing methods from Discovery Studio and
ChemAxon, our SVM model shows superiority over them. The results indicated that our model could give a reliable

and robust prediction of logD, 4. Copyright © 2015 John Wiley & Sons, Ltd.
Supporting information may be found in the online version of this paper
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1. INTRODUCTION

To exert a therapeutic effect, one drug must enter the blood
circulation and then reach the site of action. Thus, an eligible
drug usually needs to keep a balance between lipophilicity and
hydrophilicity to dissolve in the body fluid and penetrate the
biofilm effectively. Therefore, it is very important to evaluate
the lipophilicity of candidate compounds in drug research and
development process. Additionally, several studies have re-
ported the effect of lipophilicity on biological activities and
transport properties [1-7], indicating the importance to evaluate
the lipophilicity of new drugs or pro-drugs.

The lipophilicity of a compound can be quantitatively character-
ized by the partition coefficient (its logarithm form is denoted as
logP) or the distribution coefficient (its logarithm form is denoted
as logD) if ionized molecular species are present [4,5]. Partition
coefficient [8] is the equilibrium concentration ratio of the solute
between two immiscible solvents (e.g.n-octanol and water).
Although it is a major descriptor in many quantitative structure—
activity relationship (QSAR)/quantitative structure—property rela-
tionship (QSPR) equations [8-11] and a crucial part of Lipinski's
rule of five [12,13], logP only refers to the neutral form of the com-
pound and is independent of the ionization under physiological
conditions. However, it is estimated that 95% of all drugs are
ionizable [14,15]. Thus, the distribution coefficient, which takes
account of ionization, may be a more reliable measurement
for the lipophilicity at physiological pH [14-17]. Distribution
coefficient, also known as pH-dependent distribution coeffi-
cient, is the ratio of the sum of the equilibrium concentrations
of all forms of the compound (i.e., the total sum of ionized and
unionized) between two phases. There are several experimental

methods to measure the logD value [18] such as the shake-flask
method, the slow stirring method, the filter probe method, some
chromatography methods, and pH metric techniques. However,
these experimental procedures are costly and time-consuming
and require substantial quantities of the compound being synthe-
sized. Hence, it is necessary to establish a reliable prediction
model to accurately determine logD values without the need for
experiments, especially for new or even virtual compounds.
Currently, there are three main thoughts to estimate logD in
silico. (i) logD is calculated from logP and dissociation constant
(pKa), assuming that only the neutral species exist in the non-
aqueous phase [19,20]. However, the presence of both the
ionized and unionized species that necessitate a dissociative
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equilibrium in the non-aqueous phase may bring a big error.
(ii) The fragment-based methods divide a molecule into various
fragments (either at the molecular level or at the atomic level)
and then aggregate all the contributions of these individual frag-
ments to obtain the predicted logD value by a linear model [18].
However, the nonlinear relationship between logD and the
fragment values is usually neglected. (iii) The molecular property-
based methods utilize numeric characteristics of the entire
molecule to predict logD values. These characteristics are
usually known as molecular descriptors and normally calculated
from the topological structure of the molecule. Combined with
different modeling methods, the model can be linear or non-
linear. Nowadays, some of the predictive methods are available
from commercial and academic resources, such as the ALOGPS
[21,22], ChemAxon [23,24], Discovery Studio, and so on [18].
ALOGPS adjusts logP prediction with a library of measured logD
data to make a logD prediction. It is sometimes difficult to accu-
rately calculate logD values for new molecules. Four methods
from ChemAxon software belong to the fragment-based
methods [23] and thereby rely on the quality of defined frag-
ments to a large extent. Although these approaches have been
successfully applied to the logD prediction for some molecules,
they are usually not global in their success and require some
modification when applied to new data or a larger chemical
library [25]. Additionally, to our knowledge, it has rarely been
performed by modeling logD directly except two studies by
Pierre Bruneau with Nathan R. McElroy [25] and Cerep [26].

In the present study, our aim focuses on the accurate in silico
prediction of logD; 4 with a large and diverse data set collected
from the internet. Support vector machine (SVM), as a popular
machine learning algorithm, was used to establish the predicted
model for logDy 4. After descriptors of each molecule were calcu-
lated and selected, a predicted model was built with the basic
assumption that compounds with similar chemical structures
have similar properties [27,28]. Model validation and evaluation
approaches, applicability domain analysis, and comparison with
several available methods from two pieces of software
(ChemAxon and Discovery Studio) were used to assess the ro-
bustness and reliability of our model. The selected descriptors
provide some hints for mechanism of action related to logD; 4.
The results demonstrate that the model built by SVM has a good
predictive ability and could give some guidelines for improving
undesirable logD; 4 in rational drug design.

2. MATERIALS AND METHODS

2.1. Data collection

Experimental logD; 4 values were collected from two resources.
One is the ChEMBL database (https://www.ebi.ac.uk/chembl/) in-
cluding 1451 logD values. The other one is the online chemical
database (https://ochem.eu/). This database includes 367 logD
values. As the logD data in two databases were collected from
different literature sources, we only extracted those logD values
under the homogeneous experimental conditions, that is, pH=74,
temperature is 25 °C, and the organic solvent is n-octanol. Only
those molecules with reliable logD values were considered,
and those molecules with empty or indeterminate logD values
were removed. If there were two or more entries for one mole-
cule, the arithmetic mean value of these values was adopted.
The data set was filtered to remove compounds with logD values
greater than 10 or less than —10 because of their potential

unreliability. One record was reserved for the conformational or
optical isomers, because the subsequent analysis did not con-
sider the stereochemistry. Solvent or saline ions adhering to
the molecule were removed automatically by OpenBabel
(http://openbabel.org/wiki/Get_Open_Babel). The SMILES struc-
tures of these compounds were checked one by one to ensure
that they were correct. After a series of pretreatments, 1130 mol-
ecules and their logD,, values were finally collected. Their
SMILES structures and experimental logD; 4 values can be found
in the Supporting Information (see S1).

2.2. Descriptor calculation and pruning

The SMILES structures of all 1130 molecules were imported into
the Molecular Operating Environment software (version 2011.10)
to calculate two-dimensional descriptors, resulting in 188 de-
scriptors. All descriptors were firstly checked to ensure that each
descriptor value is available for each molecule. Before further de-
scriptor selection, two descriptor pre-selection steps were per-
formed to eliminate some uninformative descriptors: (1)
remove descriptors whose variance is zero or near zero; and (2)
if the correlation of two descriptors is larger than 0.95, one of
them was removed. Finally, 121 molecular descriptors were ob-
tained to represent each compound, and these molecular de-
scriptors were used as inputs for further variable selection and
the QSPR model construction. These descriptors were listed in
the Supporting Information (see S2).

According to the Organization for Economic Cooperation and
Development (OECD) principles, the QSPR models should be
checked by both internal and external statistical validation to en-
sure both reliability and predictive ability of the derived model.
Herein, all molecules were divided into two parts, namely the
training set and the test set, using the Kennard-Stone method
[29,30] to guarantee that the test samples could map the mea-
sured region of the input variables space completely. Thus, we
obtained a training set of 904 molecules (80% of the data set)
and a test set of 226 molecules (20% of the data set). The training
set was used to construct the prediction model, and the test set
was used for further assessing the performance of the model.

2.3. Support vector machine algorithm

Support vector machine developed by Vapnik and coworkers is
based on the structural risk minimization principle from statisti-
cal learning theory. Although developed for classification prob-
lems, SVM can also be applied to the case of regression.
Detailed descriptions of SVM can be easily found in several excel-
lent books and literature [31-36]. As an excellent machine learn-
ing algorithm, SVM can be used to solve linear and nonlinear
regression problems with good prediction performance [11,34]
and has been successfully used to solve many QSAR regression

problems in previous studies [37-40]. For linear regression cases,

given the training data D = {(X;,,y,)}~, (x; is the input vector

representing some molecular descriptors and y; is the output
vector representing the experimental bioactivity values), SVM
approximates the function in the following way:

f(x;) =wx +b m

where w is a vector of weights, and b is the constant coefficient.
These can be estimated by minimizing the regularized risk
loss R(C):
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where Cis a predefined regularizing parameter. L(y — f(x), ¢) is a
e-intensive loss function defined as

L(y o f(X),a) _ { ‘yf f(X)| —¢, if |Y* f(X)|23 3)

0 otherwise

Formula 2 can further be expressed in the following form with
a slack variable ¢ introduced:

minimize : R(C

T L, L,
= EHWH + NZ(@‘ +<&)
i=1
wixi +b —y<e+ & (4
subjectto : y; — (W' + b)<e + &*
fi?fi*zo i= 1727 7N
With the help of the Lagrange multiplier method and the qua-

dratic programming algorithm, the minimum problem can be
solved as

N
Za —a) (x'x;) + b (5)

i=1

N
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where a; and g; are the optimized Lagrange multipliers. For non-
linear regression cases, SVM projects the input feature vectors into
a high-dimensional feature space using a kernel function K(x; x).
Especially, the Gaussian kernel, which has been extensively used
in different studies with good performance, can be represented as

K (xix)) = exp([x; — xi[|*/20%) @

Thus, a linear SVM is applied to this high-dimensional feature
space, and the solutions are given by

N
Ea—a,

i=1

(x;,x) + b (8)

N
Za —a)K(xi,, %) +¢ )

The previous SVM algorithm is called &-SVM. In &-SVM, some
parameters (e.g. the regularization parameter C, ¢-insensitive
loss function, and the type and parameters of kernel function)
are important parameters that need to be further optimized.
The regularization parameter C is an important parameter
because of its possible effects on both trained and predicted
results, because it controls the tradeoff between maximizing
the margin and minimizing the training error. Usually, C is an
unknown parameter before modeling. If C is too small, an insuf-
ficient stress will be placed on fitting the training data. If C is too
large, the algorithm will overfit the training data. Therefore, C
should be optimized together with the kernel functions. The
parameter ¢ is also an important parameter, which depends on
the type of noise present in the data, and it is usually unknown.

There is a practical consideration of the number of resulting sup-
port vectors, even if enough knowledge of the noise is given to
select an optimal . It prevents the entire training set from meet-
ing boundary conditions, so we have to optimize ¢ and seek for
the optimal value. In this work, the Gaussian kernel function was
used to model the nonlinear relationship, and grid search was
used to obtain the best combination of parameters.

2.4. Model validation

To ensure that the derived model from the training set has a
good generalization ability, fivefold cross validation [41-43] and
an external test set were used for the validation purpose. For five-
fold cross validation, the training set was split into five roughly
equal-sized parts firstly. Then the model was built with four parts
of the data and the prediction error of the other one part was cal-
culated. The process was repeated five times so that every part
could be used as a validation set. Four commonly used parame-
ters in regression problems were employed to evaluate the
model performance [43], including the square correlation coeffi-
cients of fitting (R?), the square correlation coefficients of cross
validation (Q?), the root mean squared error of fitting (RMSE;),
and the root mean squared error of cross validation (RMSEc,).
These regression statistics are defined as follows:

RMSEr = (11)

where y;is the experimental value of the ith sample in the training
set; y; is the predicted value of the ith sample in the training set; ¥
is the mean value of all experimental values in the training set; y,);
is the predicted value of the ith sample for cross validation; and N is
the number of samples in the training set. When the external test
set was performed, the statistics RT? and RMSE, were calculated
in the similar way.

3. RESULTS AND DISCUSSION

3.1. Descriptor selection by genetic algorithm-based mul-
tivariate linear regression

Genetic algorithm-based multivariate linear regression (GA-MLR)
was used to select the best subset of descriptors, which are the most
relevant variables in modeling logD,4. GA, as a relatively high-
efficiency evolutionary algorithm, has been widely applied to various
research fields [44-47]. Herein, we adopted GA-MLR in the Molecular
Operating Environment software (version 2011.10) to search for the
optimal descriptor combination, which could give the highest ad-
justed R? (i.e., adjR®). The parameters used in GA-MLR are as follows:
population size=100, operant density=4, generation=50000,
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mutation probability = 0.5, eugenic factor =100, and auto termina-
tion=1000. Each constructed MLR model in the evolution process
was evaluated by leaving 20% out cross validation.

To study the influence of the fixed number of descriptors on
model performance, GA-MLR based on the fixed-length search was
employed. That is, we allowed GA-MLR to search the optimal de-
scriptor subset with the fixed number at each turn. The number of
descriptors was firstly fixed on 4, and then increased by one descrip-
tor once. The relationship between the fitness (adjR?) and the num-
ber of selected descriptors is shown in Figure 1. From this plot, we
can see that adjR? tends to improve with the increasing of the num-
ber of descriptors. The curve rises quickly at the beginning and then
flattens out. When the number of descriptors reaches 30, the adjR’ is
almost invariable. Thus, to balance the model complexity and model
performance, we finally selected 30 descriptors to establish the
prediction models in the following study. These selected descriptors
could be found in the Supporting Information (see S3).

3.2. Model building and external validation

Thirty descriptors selected by GA-MLR were used as an input to
generate the QSPR model by SVM. We used fivefold cross valida-
tion to evaluate the model performance, as mentioned in
Section 2.4. By means of the grid search, the optimal values of
J, C, and ¢ are set to 2°, 64, and 0.25, respectively. Once the

P i i H i i i i i
5 W 15 20 25 i 35 a0 45 0

The number of descriptors

Figure 1. Relationship between fitness (adez) and the number of fix de-
scriptors in genetic algorithm-based multivariate linear regression QSAR
modeling of the logD; 4 value.

predicted values

experimental values

parameters were optimized, we could use them to establish the
SVM model and perform the subsequent prediction. For the
training set, R?=0.92, RMSE-=0.51, and for cross validation,
Q°=0.90, RMSE¢,=0.59. When applying the SVM model to the
test set, we obtained RT?=0.89, RMSE,=0.56. As a comparison,
partial least squares (PLS) was also employed to establish the
QSPR model with the same 30 descriptors. The number of the la-
tent variables was determined through fivefold cross validation.
For the training set, R>=0.87, RMSE-=0.66, and for cross valida-
tion, Q°=0.86, RMSE,=0.68. When applying the PLS model to
the test set, we obtained RT? = 0.83, RMSE, = 0.69. Figure 2 shows
the prediction results by PLS and SVM. The experimental logD; 4
and predicted logD; 4 by PLS and SVM could be found in the
Supporting Information (see S1).

Table | lists the regression statistics of two prediction models. As
can be shown, the SYM and PLS models all obtain satisfactory pre-
diction results, indicating that 30 selected molecular descriptors can
effectively model logD; 4. It can be seen from Table | that the results
from SVM seem better than those from PLS, in terms of different re-
gression statistics. The results indicate that there may be a certain
nonlinear relationship between the selected descriptors and logD 4.
Furthermore, for two models, Q° is all slightly lower than R, indicat-
ing that these two models are reliable and have avoided the
oveffitting effect. When applying them to the test set, we find that
RT? is also only a litter lower than Q°. As the compounds of the test
set were not used in model building, this phenomenon indicates
that our model may be generally applicable. The performance of
the SVM model is also comparable with the results that were
derived by Bayesian regularized neural networks [25].

Additionally, our model was further evaluated by several
stricter criteria provided by Tropsha et al. [48-50]. According to
the suggestions from Tropsha et al, a QSAR/QSPR model is
successful if it satisfies several criteria as follows:

Q*> 0.5,R*>> 0.6

FR oroffo
2 < 0.1or 2 < 0.1
0.85<k<1.15 or 0.85<k'<1.15

where Q? and R? are the square of the correlation coefficient for
cross validation and external test set, respectively; R3 and R? are
the determination coefficient of predicted versus experimental
values and experimental versus predicted values, respectively; k

predicted values

experimental values

Figure 2. Plot of predicted logD; 4 versus experimental logD; 4 for the training set (red) and the test set (blue) (a. the partial least squares (PLS) model;

b. the support vector machine (SVM) model).
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Table I. Statistical results of the fitting, fivefold cross valida-
tion, and independent test set for PLS and SVM

Training set (N=904) Test set
(N=226)
Fitting Cross Prediction
validation
R} RMSEr Q> RMSEc, RT>  RMSEp

PLS 0.87 0.66 0.86 0.68 0.83 0.69
SVM 0.92 0.51 0.90 0.59 0.89 0.56

PLS, partial least squares; SVM, support vector machine;
RMSE, root mean squared error.

and k' are the slope of the regression lines through the origin, re-
spectively. According to the aforementioned criteria, our SVM
model could be considered acceptable as it satisfies all the

following conditions: Q?=0.90>0.5; R=089>06, "=
0.007 < 0.1, T8 —776axe 6 <0.1, 0.85<k=0970<1.15,

and 0.85<k'=0.987<1.15. In summary, SVM is suitable to pre-
dict logD; 4 with the selected molecular descriptors. In the latter
section, we mainly focus on the predictive results of SVM.

3.3. Y-randomization test

When selecting descriptors that are of relevance to model the
property of interest, it is possible to find some descriptors that
seem of importance, just-by-chance, given the high dimensional-
ity of feature space from which we are doing such a search by
some optimization tools such as GA. To guard against the possi-
bility of having learned such chance models, Y-randomization
test was advocated to validate the reliability of our QSPR model
[43,49,51-53]. In Y-randomization test, the logD, 4 values were
randomly shuffled to change their true order. Thus, although
the logD; 4 values (and the statistical distribution) stayed the
same, their position against the appropriate compound and its
descriptors was now altered, thus destroying any meaningful re-
lation that may have existed between independent variables and
response values. By these new data, we constructed a large num-
ber of QSPR models (e.g., 1000) to obtain metrics like Q°. These
metrics could be compared with those from the true model to
obtain some hints about chance correlation. Figure 3 shows
the distribution diagram of the Q? values of 1000 randomized
models and the real model. One can see that Q° of randomly
shuffled models are located in the range from —0.2 to 0. Com-
pared with the true model (Q°=0.90), there is a significant differ-
ence between the Q° of these shuffled models and the real one.
The bad prediction statistics of these shuffled models suggest
that our previous model indeed reflects the true relationship
between molecular descriptors and logD; 4 values rather than
from chance correlation.

3.4. Applicability domain evaluation

The applicability domain (AD) allows one to estimate the uncer-
tainty in the prediction of a particular molecule based on how
similar it is to the compounds used to build the model [54-60].
This is consistent with the applicability domain criterion in the
OECD principles (the third principle of the OECD principles: a

frequency

02 i} nz2 0.4 11 LLE:] 1
Q2

Figure 3. The distribution of @ of randomized models compared with
the real model in the Y-randomization test. (The red vertical line on the
right represents the Q” of the true model, and the distribution on the left
side represents the distribution of Qs of models after randomization).

defined domain of applicability) [61,62]. Prediction of a molecule
in a given model is most likely to be reliable if this molecule falls
within the AD; otherwise, its prediction is likely to be unreliable
[56,57]. In this study, we used the Williams plot to evaluate the
AD of our QSPR model. The Williams plot provides leverage
values plotted against the prediction errors. The leverage value
(h) measures the distance from the centroid of the training set
and could be calculated for a given dataset X by obtaining the
leverage matrix (H) as follows: [54,57]

H=X(X"X)"'X

where X is the descriptor matrix; X' is its transpose matrix; and
(X™X)"" is the inverse of (X"X). The diagonal elements in the H
matrix represent the leverage values (h) for the molecules in
the dataset. The warning leverage, h* was fixed at 3p/n
(h*=0.100) in this study, where p is the number of descriptors
and n is the number of training samples. A query molecule with
leverage higher than h* may be associated with unreliable pre-
dictions. Such molecules are believed outside the descriptor
space and thus will be considered outside the AD. Figure 4
shows the Williams plot based on leverage values and prediction
errors. In Figure 4, the horizontal line divides the leverage value
axis into two parts, and the points above the line have a greater
leverage than h*(i.e., 3p/n=0.100); while the two vertical lines di-
vide the prediction error axis into three parts and verify the pres-
ence of compounds with prediction errors greater than three
standard deviation units (+30, i.e.,, £1.794) in the training set.
With this Williams plot, the AD of our QSPR model could be
defined. It can be seen from Figure 4 that a great majority of
compounds in the training and test set fall within the AD. In this
domain, the chemical with a low leverage often has a low predic-
tion error, indicating these compounds are likely to be well pre-
dicted by the SVM model. However, there are still a few
compounds locating outside the AD, indicating predictions of
these compounds are likely to be unreliable. Additionally, we
can find that some compounds with high leverages have low
prediction errors, while some compounds with low leverages
possess high prediction errors. This could be explained by the
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Figure 4. Williams plot of leverages versus prediction errors. The horizontal line represents the warning leverage value (h* =3p/n~0.100), and the

vertical lines indicate the place of +3 standard deviation units.

fact that the defined AD only considers interpolation by simply
excluding all samples in the extremities and including all those
surrounded by training samples. As we can see from Figure 4,
some compounds, marked by circles, are identified as outliers.
Two molecules (A-logD;4-24 and 0-412) have large prediction
errors and thereby were diagnosed as y-direction outliers. One
(A-logD5 4-24) is a peptide, whose sequence is Ac-Tyr-Gly-Gly-
GIn-NH,. The other one (0-412) is rifampin, a bactericidal antibi-
otic drug, which is often used in the treatment of tuberculosis,
Enterococcus infection, and so on. Figure 5 shows the structures
of two y-direction outliers. After removal of these two outliers
marked by green circles, Q? increased by 0.03 and RMSE, de-
creased by 0.01. Furthermore, the compounds marked by blue
circles have relatively high leverage values but low prediction er-
rors. We identified them as X direction outliers. These X direction
outliers are far away from the main body of the training set.
However, they do not have big prediction errors and thereby
do not damage the prediction performance. In summary, the
AD defined by the Williams plot is reasonable. We can use it to
evaluate the reliability of our future predictions.
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Figure 5. The structure of two compounds that diagnosed as y-direc-
tion outliers (A. A-logD; 4-24,apeptide, whose sequence is Ac-Tyr-Gly-
Gly-GIn-NH,; B. 0-412, rifampin).

3.5. Comparison with other methods

To further evaluate the prediction performance of our model, our
result was compared with several existing methods from
ChemAxon (version 5.4.1.1) and Discovery Studio (version 2.5,
DS for short). In ChemAxon, four methods can be used to predict
logD, including VG, KLOP, PHYS, and Weight (the average of the
previous three methods). LogD; 4 is calculated from calculated
pKa and logP values, which are evaluated by the additive model.
The difference in the first three methods is the diverse fragment
set used for modeling. In DS, logD; 4 is calculated as a descriptor
for further molecular simulation. The SMILES structures of all
molecules were imported into the ChemAxon and DS software
to calculate logD; 4. The calculation results of five methods are
listed in the Supporting Information (see S1). The regression sta-
tistics of these methods are summarized in Table II.

As we can see from Table II, B values of five methods from two
pieces of software are 0.63, 0.67, 0.64, 0.62, and 0.71, respectively.
Among these prediction methods, R? follows the decreasing order:
SVM > Marvin_PHYS > Marvin_weight > Marvin_VG > DS > Marvin_
KLOP. Similarly, RMSE and mean absolute error follow the increas-
ing order: SVM < Marvin_PHYS < Marvin_weight< DS < Marvin_
VG < Marvin_KLOP. Clearly, the SYM method obtained the best

Table Il. Comparison of prediction statistics for different
modeling methods

R? R RMSE MAE
SVM 0.90 0.95 0.59 0.47
DS 0.63 0.79 1.19 0.90
Marvin_weight 0.67 0.82 1.19 0.86
Marvin_VG 0.64 0.80 1.26 0.93
Marvin_KLOP 0.62 0.78 1.32 0.95
Marvin_PHYS 0.71 0.84 1.10 0.80

SVM, support vector machine; RMSE, root mean squared
error; MAE, mean absolute error; DS, Discovery Studio.

wileyonlinelibrary.com/journal/cem
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prediction performance (R?=0.90, RMSE =0.59, mean absolute
error=0.47). Figure 6 shows the predictive results from six
methods including our proposed SVM model. One can see that
SVM model has the best correlation between the predicted and
experimental logD; 4 values. To further observe the difference be-
tween these methods, we plotted the diagram of correlation ma-
trix depicting the patterns of relations between the experimental
and all calculated logD; 4 values (Figure 7). In Figure 7, the diago-
nal element is the experimental method (Exp) or several
predicted methods (SVM, DS, M_W, M_VG, M_K, and M_P). Each
row or column displays the pair correlations between the method
expressed by the diagonal element and the other methods. From
Figure 7, one can see that SVM has the best correlation with the
experimental logD; 4 values. We can also see that four methods
from ChemAxon software have very high correlation coefficients
(i.e,>0.95). This phenomenon can be explained by the fact
that these three methods (Marvin_VG, Marvin_KLOP, and
Marvin_PHYS) have the same idea to calculate the logD, 4 and
Marvin_Weight adopted the average of three aforementioned
methods as the calculated logD; 4 value.

Usually, we consider predictions with absolute deviations
<0.50 as good estimates. Predictions with deviations >0.50 and
<1.0 are considered disputable, while predictions with devia-
tions >1 are unacceptable [63-65]. Table Il summarizes three dif-
ferent error levels for each method. From Table IIl, SVM obtains
the most reliable result as 60.35% of 1130 samples are well
predicted, followed by Marvin_Weight (42.21%), Marvin_PHYS
(41.77%), DS (40.09%), Marvin_VG (36.64%), and Marvin_KLOP
(35.13%). For predictions with deviations >0.50 and <1.0, SVM
also obtains satisfactory results. Additionally, one can see that
Marvin_Weight has a better estimate than Marvin_PHYS,
Marvin_VG, and Marvin_KLOP. This phenomenon confirms that
taking the average value of many different methods is an
efficient way to give a more reliable prediction, especially when
we do not know which one is prevailing.

Through a comprehensive comparison with five existing
methods, the SVM model shows the best prediction perfor-
mance guaranteed by good agreement between the experimen-
tal and calculated values and accompanied by good regression
statistics. The reason why the SVYM model obtains better results
could be summarized into three points. Firstly, logD; 4 was calcu-
lated by pKa and logP in ChemAxon, while pKa and logP were

0.96

Figure 7. Diagram of correlation matrices of experimental and calcu-
lated values of each method. SVM, support vector machine; DS, Discovery
Studio.

evaluated by additive methods. In consequence, multi-step esti-
mation may bring extra error for logD; 4 prediction. Secondly, to
some extent, the prediction methods in ChemAxon are a group
contribution-based additive model. As a result, the model could
be linear and cannot well account for the nonlinear relationship
between the logD; 4 and molecular descriptors. The third reason
is probably the diversity of the data. In this study, we collected a
big data set, which was not used previously. Therefore, we can
reasonably speculate that there may be some fragments that
were not been defined in ChemAxon.

3.6. Model interpretation

Because many different combinations of descriptors may yield a
similar prediction performance, sometimes it is difficult to
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Figure 6. Comparison of the correlationships between experimental and calculated values of each method. DS, Discovery Studio.
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Table Ill. Comparison of the different residual levels of each method

SVM, support vector machine; DS, Discovery Studio.

0-0.5 0.5-1.0 >1.0
Amount Proportion (%) Amount Proportion (%) Amount Proportion (%)
SVM 682 60.35 341 30.18 107 9.47
DS 453 40.09 279 24.69 398 35.22
Marvin_weight 477 42.21 302 26.73 351 31.06
Marvin_VG 414 36.64 312 27.61 404 35.75
Marvin_KLOP 397 35.13 337 29.82 396 35.04
Marvin_PHYS 472 41.77 343 30.35 315 27.88

establish a rich and interpretable model. However, it can still pro-
vide some hints for mechanism of action related to logD, 4. To
well compare and interpret every molecular descriptor, the vari-
able importance of molecular descriptors was computed based
on SVM. At each round, one descriptor was removed from the
molecular descriptor pool; the remaining 29 molecular descrip-
tors were used to build the model, and a new Q% was computed.
The difference between the new Q? and the preceding one can
be seen as a measure of variable importance of the removed
molecular descriptor. The process was repeated 30 times, and
the importance of every molecular descriptor was obtained
and displayed in Figure 8.

From Figure 8, we can see that descriptors vsa_acc, logP(o/w),
SMR_VSAG, logS, weinerPol, SlogP_VSA3, TPSA, and vsa_pol are
of great importance in predicting logD- 4. Generally, these de-
scriptors disclose information about hydrogen bond, polarity,
and surface area of the molecule. Vsa_acc, the sum of van der
Waals surface areas of pure hydrogen bond acceptors, shows
the greatest importance in Figure 8. It contains information
about the hydrogen bond of the molecule. As we all know,
hydrogen bond plays a significant role in dissolution behavior.

Generally speaking, a compound with a strong tendency to form
hydrogen bond usually has a large solubility in the aqueous
solution and a small solubility in the hydrophobic solvent.
Thus, the descriptor Vsa_acc has an essential effect on
logD; 4. LogP(o/w) is the logarithm of the octanol/water partition
coefficient. Several studies reveal that there is an approximate
calculation formula between the logP and logD through pKa. For
neutral compounds, logD is even numerically equal to logP. It is
therefore no doubt that logP has a great influence on logD; 4.
Several QSAR/QSPR studies have reported that logP/logD, 4 was
usually used as an indicator to model logS (the logarithm of the
aqueous solubility). And the Yalkowski equation also provides the
physical basis for relating logP and solubility. There is understand-
ing that they have a high correlationship. TPSA is the total polar
surface area calculated from connection table information. Vsa_pol
is the sum of van der Waals surface areas of polar atoms. Both of
them reveal information regarding the polarity of the molecule.
Molecules with a greater polarity are usually believed to accom-
pany with bad dissolving in hydrophobic solvents and a good
dissolvability in aqueous solutions. Moreover, SMR_VSA6,
weinePol, and SlogP_VSA3 contain information on subdivided
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Figure 8. Variable importance of 30 molecular descriptors based on support vector machine.
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surface areas of the molecule and were considered relating to
molecular shape and size. Thus, these three descriptors have some
effects on the logD values of compounds. Based on the analysis of
the importance of descriptors used in the SVM model, we cannot
only reveal the important factors influencing logD but also provide
some guidance to improve the undesirable logD value of
molecules to some extent.

4. CONCLUSIONS

As an important parameter in pharmacology, toxicology, and
medicinal chemistry, the evaluation of logD; 4 is of high impor-
tance in the drug discovery process. In the present study, we
developed a QSPR model to reliably predict the logD, 4 with a
big and diverse data set. The comparison between SVM and
PLS showed the nonlinear model derived by SVM provides better
result with the same molecular descriptors. Furthermore, a series
of evaluation steps such as cross validation, Y-randomization
test, applicability domain, and the external test demonstrate
the robustness and reliability of our model, strictly following
the spirit of OECD principles. When compared with several calcu-
lation methods from ChemAxon and DS, the SVM model also
shows superiority over them. The results indicate that the model
built by SVM is reliable and has a good predictive ability. Because
our proposed QSPR model was developed on the basis of theo-
retical descriptors calculated only from two-dimensional molecu-
lar structures, it could provide a fast, convenient, and accurate
way for the evaluation of logD;4 of vast compounds, even for
virtual compounds. Thus, this study is necessary and useful in
the pharmaceutical industry, because it can save substantial
amounts of time, money, and human resources.
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