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In the present study, we propose a novel local regression algorithm based on manifold-ranking and k-nearest
neighbors (MRKNN for short). Under the framework of kernel methods, the group relationship shared among
multiple molecules is firstly captured by the graph where nodes represent molecules and edges represent
pairwise relations. Then, manifold ranking algorithm is developed for query-oriented extractive summarization,
where the influence of query is propagated to other molecules through the structure of the constructed graph.
When evaluated on four SAR datasets,MRKNN algorithm can provide a feasibleway to exploit the intrinsic struc-
ture of similarity relationships. Results have validated the efficacy of the proposed algorithm.
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1. Introduction

Quantitative structure–activity relationship (QSAR) technology
is capable of modeling and prediction of the relationship between
response-variable andmolecular predictors. In QSARmodeling, the pre-
dictors consist of physico-chemical properties or theoretical molecular
descriptors of chemicals, while the response-variable could be a biolog-
ical activity of the chemicals. Up to now, manymodelingmethods have
been applied to describe the studies of QSAR, includingmultivariate lin-
ear regression (MLR) [1–3], partial least-squares regression (PLS) [4–6],
principal component analysis (PCA) [7], neural networks (NN) [8–9],
linear discrimination analysis (LDA) [10–13], classification and regres-
sion tree (CART) [14], and random forests (RF) [15–16], etc. A common
feature underlying models built by these techniques is that the entire
training data set is considered for building those models. Such models
were usually termed as “global” models. However, if the relationship
between biological activity and chemical structures is overly complex,
the global methods usually perform bad [17].

As a result, methods which can focus on structure–activity trends
that are not necessarily global can be used to build QSAR models. Intui-
tively, one can develop a local model by considering subsets of a large
data set that have similar compounds and then build models on the
subsets. Actually, one of the most commonly used local methods in
QSAR studying is k-nearest neighbors (K-NN) [18]. It is one of the
most fundamental and simple classification or regression methods for
a QSAR studywhen there is little or no prior knowledge about the distri-
bution of the data.

Nowadays, similarity queries (retrieval) is a versatile primitive for
molecule databases [19]. It plays an important role in applications,
such as molecule or gene ranking. In general, a molecule query aims at
retrieving similar molecules, which means detecting those molecules
that are functionally related to it. The output of a molecule query con-
tains molecules ranked in descending order of their similarity. High-
ranked objects are likely to have similar properties to the query, and
thus be of interest for property prediction.

The problem that arises here is that the outcome of a query usually
returns a vast amount of results. The order of the returned results
plays a very important role to the user's needs. For instance, every
user would wish the first result also to be the desirable one. Inspired
from algorithms used in web search engines, such as the well-known
Google's PageRank [20], many methods have been developed that
rank results according to their importance [21–22]. Theneed for ranking
exists in biological databases, as well [23–24]. Therefore, given a query
molecule, how to get an accurate ranking order and then use these rank-
ing results to modeling has drawn attention to most of us.

In the present study, we construct a novel local algorithm, which
obtains a prediction for a query molecule using its local neighborhood
given by manifold-ranking approach. This method is termed as MRKNN
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method. A significant advantage of MRKNN is that it can avoid the risks
caused by the pair-wise distance and provide a feasible way to exploit
the intrinsic structure of similarity relationships in SAR datasets. The re-
mainder of this paper is organized as follows. Section 2 presents three
commonly used similarity metrics in K-NN as well as manifold-ranking
algorithm. In Section 3, we introduce several QSAR datasets and assess-
ment of predictive accuracy. Section 4 shows the results of the compari-
son among these local algorithms on four datasets. Section 5 gives the
conclusions.

2. Methodology

2.1. Similarity metrics

The notion of chemical (molecular) similarity searching is one of the
most important concepts in chemoinformatics. It plays an important
role in modern approaches to predicting the properties of chemical
compounds, designing chemicals with a predefined set of properties
and, especially, in conducting drug design studies by screening large da-
tabases containing structures of available (or potentially available)
chemicals. The base of such relationships is on an assumption that com-
pounds of similar structure will exhibit similar bioactivities or physico-
chemical properties [19]. That is to say, a data set with very similar
chemical structures should give accurate prediction of analogous
molecular property when used to establish a QSAR model. A simple
strategy hence involves computing the similarity between the known
reference structure and each of the molecules in a database, ranking
the databasemolecules in decreasing order of the computed similarities
and then carrying out real screening on just the top-ranked database
molecules.

Chemical similarity (molecular similarity) is often described as
an inverse of a measure of distance in descriptor space. A similarity co-
efficient can be converted to a distance by taking its “complement”
Distance = 1 − Similarity. Three distance-based approaches have been
found to be the most useful in QSAR research, namely, the Euclidean,
Manhattan and Canberra distance measures [25–26]. The Euclidean
distance is the square root of the squared differences between corre-
sponding elements of the rows (or columns) in the distance matrix. The
Manhattan distance is the sumof the absolute differences between corre-
sponding elements of the rows (or columns) in the distance matrix.
Details of three distanced-based approaches are shown in Table 1. Thus
far, as noted in the introduction, we focus here mainly on quantitative
characteristics according to the type of molecular representation.

2.2. k-nearest neighbors algorithm

The k-nearest neighbors algorithm (K-NN) is an intuitive method
commonly used for classification and regression problems. It
predicts objects “values” or class memberships based on the k closest
training examples in the feature space. Given a dataset, K-NN works
by selecting the k closest samples from a set of well-known classified
data (training data) and choosing the class with the most represen-
tatives in the set. Generally, the neighborhoods can be selected
Table 1
Chemical similarity coefficients for molecular descriptors.

Name(s) of similarity metric For quantitative characteristics

Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑d

i¼1ðxi−yiÞ2
q

Manhattn distance ∑d
i¼1jxi−yij

Canberra distance ∑d
i¼1

jxi−yij
jxi þ yij

Notes: Assume that two molecules, A and B, assume further that [x1, x2, ⋯ ,xd]′
(or [y1,y2,⋯ ,yd]′) are set to one in the descriptors for A (or B).
according to the similarity metrics introduced in Table 1. Formally,
the upper limit of k is the total number of compounds in the training
dataset (k b n). Specifically, the k-nearest neighbors fit for dependent
variable ŷ is defined as follows:

ŷ xð Þ ¼
XNNk xið Þ

i¼1

wiyi ð1Þ

where NNk(xi) is the neighborhood of xi, wi represents the weight
of xi.

In general, choosing a proper neighborhoodmay contribute to reduce
the complexity of computation and get a more accurate model. The opti-
mal neighborhood k is often determined by cross-validation. However,
although K-NN is valid and convenient for QSAR modeling, it also has
some shortcomings. Firstly, it detects the similarity mainly by pairwise
distance rather than by structure. Thus, it can not efficiently capture the
intrinsic structure hidden in the data set. Secondly, when the structure
of data shows complex or overlap, it inevitably results poor prediction.

Assumewewant to select the top fivemost similar data to the query
(the red triangle), then Fig. 1(A) is obtained if using Euclidean distance.
However, three points of them are not the most similar data to the
query in real sense, since they belong to the class of “rectangular”. Actu-
ally, whatwewant is to select thefivemost similar datawhich belong to
the same class as the query (or the same structure to the query), this
could be explained in Fig. 1(B). Thus, exploring a proper similarity
method can make the model more accurately.

2.3. Manifold-ranking method

Manifold-ranking, originally developed by Zhou et al., is a semi-
supervised algorithm [27–28]. It has been used in the field of document
retrieval, image processing and face recognition, etc. Specifically, the
goal of learning to rank is to derive a ranking function fwhich can deter-
mine relative preference between two data or variables. The detailed
description of manifold-ranking is described as follows.

Given a set of points χ={x1,⋯ ,xq,xq+1,⋯ ,xn}⊂ℝm, the first q
points are the queries and the rest are the points which we want to
rank according to their relevance to the queries. Let d:χ×χ→ℝ denote
a metric on χ, such as Euclidean distance, which assigns each pair of
points xi and xj a distance d(xi,xj). Let f :χ→ℝ denote a ranking function
which assigns to each point xi a ranking value fi. We can view f as a vec-
tor f=[f1,⋯ , fn]T. We also define a vector y=[y1,⋯ ,yn]T, where yi=1 if
xi is a query, and yi=0 otherwise.

Step 1. Sort the pairwise distance among points in ascending order,
then repeat connecting the two points with an edge according
the order to get a connected graph.

Step 2. Establish the affinity matrix w defined by kernel function [29],

W ¼ wij ¼ ϕ xið Þ;ϕ xj
� �� �� �

; i ¼ 1;⋯;n; j ¼ 1;⋯;n

if there is an edge linking xi and xj. Note thatWii = 0 because there are
no loops in the graph. Compared with the original algorithm proposed
by Zhou, we also use another Laplacian kernel method to construct
the affinity matrix among data sets.

Step 3. Symmetrically normalize W by K=D−1/2WD−1/2 in which D
is the diagonal matrix with (i,i)-element equal to the sum of
the i–th row of W.

Step 4. Iterate

f t þ 1ð Þ ¼ αf tð Þ þ 1−αð Þy ð2Þ

until convergence, where α is a parameter in [0,1).

Step 5. Let fi⁎ denote the limit of the sequence { fi(t)}, then rank each
point xi according to its ranking scores fi⁎ (largest ranked first).



Fig 1. Two patterns: triangle and square. The query sample (red, solid triangle) should be classified by local methods. Assume k = 5, Left panel (A): K-NN, Right panel (B): Ideal K-NN.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

73L. Shen et al. / Chemometrics and Intelligent Laboratory Systems 151 (2016) 71–77
To illustrate the manifold-ranking algorithm, let us consider a
spiral dataset generated by two intertwining moons in Fig. 2.
Fig. 2(A) represents the original data which belong to two classes
(structures). The data of upper moon belong to one class, while the
data of lower moon belong to another class. In Fig. 2(B), the blue star
represents the query. Then given the query, what we want is to obtain
the ranking of similarities for the remaining data. By using manifold
ranking algorithm, the ranking results are shown in Fig. 2(B), where
the area of the circle represents the size of the similarity to the query.
Therefore, we can see that manifold algorithm ranks the neighbors
mainly by the structure rather than solely by pair-wise distance.
Fig 2. Ranking on the two moons pattern. The blue star point represents the query. (A) the orig
represents the size of the similarity to the query for each node. (For interpretation of the refere
2.4. Building MRKNN using manifold ranking

In this section, we will discuss our semi-supervised manifold-
ranking guided k-nearest neighbors (MRKNN) algorithm. As the struc-
ture of data usually shows complex, using traditional approaches can
not detect the molecular similarities inherently. With the manifold-
ranking algorithm, the rank scores can be propagated among all the
data and then the similarity can be found. That is to say, this algorithm
ranks the data with respect to the intrinsic cluster structure. Under
the framework of kernel methods, we then constructed a novel algo-
rithm which combines manifold ranking with k-nearest neighbors
inal data set with the query; (B) the results using manifold-ranking. The area of the circle
nces to color in this figure legend, the reader is referred to the web version of this article.)



Table 2
Pseudocode for the MRKNN algorithm.

Input Data Z={(x1,y1),⋯ , (xn,yn)}

1:

Initialization: f1(0)=1; fi(0)=0
for t=0,1,2,⋯do
for i=2 to m do

f iðt þ 1Þ←K1i þ α∑
m

j¼2
Kji f jðtÞ

end for
Until convergence:fi⁎←{ fi(t)}

2:
Use cross-validation to select the optimal k-nearest neighbor for KNN
after ranking.

3: Prediction: ŷi ¼ ∑
k

i¼1
wiyNNðx0

i
Þ

Output The neighborhood k, ŷi , RMSECV, Q-squared, i=1,2,⋯ ,n
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(MRKNN for short). Pseudocode of theMRKNN algorithm is provided in
Table 2.

As the local MRKNNmodel has to consider the neighborhood of the
queries, then the reliable QSAR predictions are limited generally to the
chemicals that are structurally similar to the queries. The chemicals
that satisfy the scope of themodel are considered aswithin the Applica-
bility Domain (AD). There are many methods for defining Applicability
Domain, such as Range-Based and Geometric Methods, Distanced-
Based Methods, Probability Density Distribution-Based Method, etc.
[30] In the present paper, the nearest neighbor approachwhich belongs
to the Distance-Basedmethods is used to define the AD.Within the user
defined threshold of nearest neighbors, the query chemical with higher
similarity is indicated to have a proper number of training neighbors
and therefore, is considered to be reliably predicted. For the effective-
ness of computation, we set the threshold of nearest neighbor as 30.

3. Data sets, software and performance evaluation

3.1. QSAR data sets and software

Four datasets were used for this study. According to ref. [31], whole-
molecule 3D descriptors such as molecular volume and charged partial
surface area (CPSA) descriptors have been calculated for ACE, GPB and
THERM data sets. These descriptors are calculated using Gasteiger-
Marsili charges implemented in Cerius2 (the Polygraph set) and the
CORINA structures [31–33] generated from SMILES strings. Because
the charges and structures are determined with a straightforward and
unambiguous approach, it is referred to as 2.5D descriptors. The fourth
surface tension (ST) data set was extracted from JASPAR (JASPAR 1972).

(1) ACE. A set of 114 angiotensin converting enzyme (ACE) inhibitors
has been taken from the work of Depriest et al. [34], which de-
scribes their use for CoMFA modeling. Activities are spread over
a wide range, with pIC50 values ranging from 2.1 to 9.9 (μmol/L).

(2) GPB. A set of 66 inhibitors of glycogen phosphorylase b (GPB)
have pKi values ranging from 1.3 to 6.8 (μmol/L) [35].

(3) THERM. A set of 76 thermolysin inhibitors (THERM) have pKi

values ranging from 0.5 to 10.2 (μmol/L) [36].
(4) ST. Surface tension is a property of the surface of a liquid that

allows it to resist an external force. The surface tension at 25 °C
for 1416 chemicals was obtained from the data compilation of
Table 3
Description of QSAR data sets on 2.5D descriptors used as inputs for models.

ACE GPB

No. of molecules 114 66
No. of variables 55 55

Descriptor selected
S_dO, CHI.V.2, JX, CHI.0, Jurs.FPSA.2,
PMI.mag, Fh2o, Shadow.Zlength

S_ssNH, Shadow.XYfra,
Kappa-2
JASPAR [37]. The estimated experimental surface tension value is
only used if the closest experimental data point is within 10 °C
of 25 °C. Themodeled propertywas the surface tension in dyn/cm.

As many of the raw descriptors contain little information or are cor-
related with other descriptors, thus, the following step is to reduce the
number of descriptors via objective feature selection. This procedure is
used to reduce the initial descriptor pool to a more manageable size
by using statistical methods which ignore the dependent variable. Ob-
jective feature selection involves the use of a correlation testing
(where if a given pair of descriptors have a Pearson correlation greater
than a user specified cutoff, a random member of the pair is deleted)
and an identical testing (where descriptors contain a user specified per-
centage of identical values are deleted). In this study, the correlation
cutoff and identical cutoff were set to 0.75 and 0.75, respectively.

After that, the stage of subjective feature selection was employed to
search for optimal descriptor subsets. The genetic algorithm (GA) of op-
timization routines coupled with the stepwise multiple linear regres-
sion was used to find models [38–42]. By this optimization method, a
list of top performing descriptor subsets are generated. After that, the
optimal subset of variables was an eight-descriptor model, a six-
descriptor model, a three-descriptor model and a five-descriptor
model for ACE, GPB, THERM and ST, respectively. The descriptors select-
ed by GA-lm for four sets are listed in Table 3.

3.1.1. Software
The algorithm used in the present study, together with other pro-

grams, was written in R environment (version 3.1.1), and run on a per-
sonal computer (Intel Pentium processors4/2.6GHZ 4.00 GB RAM). The
MRKNN was performed with the “kernlab” package. The R scripts used
in this study are available upon request.

3.2. Performance evaluation

Validation is a crucial aspect of any quantitative structure–activity
relationship (QSAR) modeling. Several validation techniques have
been proposed in order to estimate the model prediction capability in
chemometrics. Basically, RMSE is a frequently usedmeasure of the stan-
dard deviation differences between predicted values and observed
values. The use of RMSE is very common and it makes an excellent gen-
eral purpose errormetric for numerical predictions. Generally, there are
two forms of RMSE, including RMSECV and RMSEP. Herein, RMSECV is
used to measure the root-mean-square-error of cross validation, while
RMSEP is used to measure the root mean square error of independent
validation set.

RMSECV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XNtraining

i¼1

yi−ŷið Þ2
vuut ð3Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

i¼1

yi−ŷið Þ2
vuut ð4Þ

where yi, ŷi and y are the observed value, predicted value and the mean
value of observed value, respectively. Ntraining, Ntest and N represent the
THERM ST

76 1416
55 188
S_ssO, IC, Rotlbonds, AlogP98,
Jurs.PPSA.1

a_ICM, balabanJ, GCUT_SLOGP_2, GCUT_SMR_1,
KierFlex, weinerPath, weinerPol



Table 4
Predictive results of four datasets by 3-fold cross-validation.

Euc-KNN Man-KNN Can-KNN RBF-MRKNN Lapl-MRKNN

ACE
param (k/δ) 5 8 12 6/0.01 4/0.007
q2CV 0.73 0.72 0.69 0.77 0.76
RMSECV 1.17 1.20 1.27 1.11 1.12

GPB
param (k/δ) 4 6 7 5/0.0025 7/0.003
q2CV 0.57 0.57 0.57 0.60 0.64
RMSECV 0.69 0.70 0.69 0.67 0.63

THERM
param (k/δ) 3 3 17 3/0.01 3/0.01
q2CV 0.49 0.45 0.33 0.51 0.50
RMSECV 1.30 1.35 1.59 1.27 1.28

ST
param (k/δ) 4 3 3 4/1 5/1
q2CV 0.76 0.76 0.67 0.78 0.78
RMSECV 0.48 0.48 0.56 0.47 0.47

For RBF-MRKNN and Lapl-MRKNN, the number of nearest neighbors is followed by the
width of RBF or Laplacian kernel function.

Fig. 3. RMSECV vs. k nearest numbers of the five different models for ACE, GPB, THERM and ST.
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number of training samples, the number of testing samples and the
whole size of data set, respectively.

For regression problems in chemometrics, another commonly used
measure employed to evaluate the model behavior is Q-squared (q2)
[43–46],

q2 ¼ 1−

Xn
i¼1

yi−ŷið Þ2

Xn
i¼1

yi−yð Þ2
: ð5Þ

Often, a high value of this statistical characteristic (q2N0.5) is consid-
ered as a proof of the high predictive ability of the model. To assess the
effect of outliers on the value of q2, compounds with residuals more
than 3 standard deviations from the average residuals were identified
and excluded from the calculation.

4. Results and discussion

To assess the performance of our proposedMRKNN approach in SAR
studies, two kernel functions (Gauss Radial Basis and Laplacian) were
used to give the model, denoted as RBF-MRKNN and Lapl-MRKNN. As
a comparison, Euclidean distance with K-NN (Euc-KNN), Manhattan
distance with K-NN (Man-KNN), and Canberra distance with K-NN
(Can-KNN) were used as baseline methods to give the prediction. For
each data set, we considered three-fold internal cross-validation for
the whole data set as well as the case independent validation set. Each
predictor of four datasets is scaled to have zeromean and unit variance.

To increase the accuracy and relevance of the similaritymeasure, we

used weighted mean in formula ŷi ¼ ∑
k

i¼1
wiyNNðx0iÞof Table 2. In this for-

mula, wi represents the ranking score of xi in MRKNN-related method;
while in KNN-related method, wi represents the inverse of the distance
between the query and the sample xi.

4.1. Internal validation results for three QSAR datasets

Cross-validation (CV), themost commonly usedmethod for internal
validation, is a statistical technique in which different proportions of
chemicals are iteratively held-out from the training set used for model
development and “predicted” as new by the developed model in order
to verify internal “predictivity”. For three-fold cross-validation, the orig-
inal whole dataset is randomly partitioned into three roughly equal-
sized parts. Of the three parts, the two parts are used as training data
to fit the model, and the remaining single part is retained as the valida-
tion data for testing themodel. The cross-validation process is repeated
three times so that every part can be predicted as a validation set. The
composition of the sets is summarized in Table 3. Herein, the iteration
times t in Table 2 is set to 400 in order to reach convergence.

For Euc-KNN, Man-KNN and Can-KNN, the optimal parameter of
nearest neighbor k was determined by cross validation and grid-based
search. For RBF-MRKNN and Lapl-MRKNN, the parameter of nearest
neighbor k and the width of the Radial basis and Laplacian kernel func-
tion δ were also determined by cross validation and grid-based search.

The trends of RMSECVwith the increasing of nearest neighborhoods
for each data set are shown in Fig. 3. In general, RMSECV reaches a first
minimum, then rises again with increasing model complexity (nearest



Fig. 4.Visualization of part of the similarity network. Shown is a small part of themolecular similarity network,where thenavybluenode SQ29852_2U is the query, and the domainswhich
are directed by light blue edges from the query are its homologs. Note that the red scores inside the nodes are themanifold ranking activation values, while the edges from the query to the
nodes are labeled with Euclidean distance in KNN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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numbers). The number of neighbors with the lowest RMSECV was se-
lected as the optimal complexity. Statistics are reported for the most
predictive combination of parameters and model complexity in Table 4.

For the ACE set, RBF-MRKNN minimizes RMSECV at six nearest
neighborhoods (q2CV = 0.77) while Lapl-MRKNN minimizes RMSECV
at four nearest neighborhoods (q2CV = 0.76). Both MRKNN methods
perform better than K-NN related methods. For the GPB set, Lapl-
MRKNN yields the best results at seven nearest neighborhoods, with
RBF-MRKNN only slightly less predictive. The other three pair-wise
distance-based KNN methods perform no better than RBF-MRKNN
and Lapl-MRKNN. For the THERM, Euc-KNN performs the best in the
traditional distance-based KNN methods, but still less predictive than
other two MRKNN related methods. For the ST set, both RBF-MRKNN
and Lapl-MRKNN perform better than the baseline methods. On the
whole, the predictive performance byMRKNN relatedmethods is better
or comparative comparedwith the K-NN relatedmethods. These results
have validated the efficacy of the proposed algorithm.

In the following, an example was taken to illustrate why this might
be the case. Two similarity methods, the Euclidean distance and
manifold-ranking with RBF kernel, were used to give the similarity
ranking for phosphate in ACE inhibitors, respectively. The results of
ranking by two methods are shown in Fig. 4. Shown is a small part of
the molecular similarity network, where the (navy blue) node
SQ29852_2U is the query, and the domains which are directed by
(light blue) edges from the query are its homologs. The large (pink)
node at the left represents all other domains. Here, the top five most
similarmolecules to the query were selected by these twomethods. Ac-
cording to the query, RBF-MRKNN selected SQ29852_2K, SQ29852_2I,
SQ29852_2V, SQ29852 and SQ29852_2P to give the model, while Euc-
KNN selected SQ29852_2I, SQ29852_2K, SQ29852, SQ29852_2P and
SQ29852_2E to give the model. Note that SQ29852_2V is assigned a
higher score by Euclidean than SQ29852_2I by manifold-ranking, even
though the Euclidean values assigned indicate the opposite between
them. Thus, together with the performance in Table 4, we can conclude
thatMRKNN can efficiently and directlymeasure the similarities ofmol-
ecules by a series of local information hidden in the molecules.
Table 5
Predictive results of three datasets by independent validation set.

Methods ACE GPB THERM ST

RMSEP q2 RMSEP q2 RMSEP q2 RMSEP q2

Euc-KNN 1.08 0.71 0.53 0.65 1.4 0.44 0.49 0.75
Man-KNN 1.17 0.65 0.55 0.64 1.46 0.43 0.48 0.77
Can-KNN 1.06 0.72 0.63 0.64 1.67 0.31 0.58 0.65
RBF-MRKNN 1.05 0.74 0.52 0.66 1.28 0.51 0.47 0.77
Lapl-MRKNN 1.07 0.72 0.51 0.67 1.29 0.50 0.47 0.77
4.2. External validation results for three QSAR datasets

Although the above discussion indicates that MRKNN algorithm can
improve the prediction capability of regression, wewould also wish the
model to be validated by some other new molecules. Thus, we
partitioned the dataset randomly into the training set of 80% and the in-
dependent test set of 20%,where the training set is used for selecting the
optimal parameter values of themodel, and the independent (external)
validation set is merely used for evaluating the performance of the
model. Table 5 lists the prediction results of five methods on indepen-
dent validation set. One can clearly see that RBF-MRKNN and Lapl-
MRKNN obtain satisfactory predictive results, and the results from the
independent validation set are very close to those by three-fold cross-
validation. Together with the results of internal cross-validation in
Table 4, the results by external validation set indicate thatMRKNN algo-
rithm could be considered novel and competitive.

5. Conclusions

In this work, we aim at constructing a novel local algorithm, which
combines the manifold-ranking with k-nearest neighbors (MRKNN).
Then, under the framework of kernel methods, MRKNN can efficiently
model the relationship between molecular structures and bioactivities
of compounds. The critical innovation that led to the success of
MRKNN is its ability to exploit inherent similarity structure for the
given queries. Four QSAR datasets collectively demonstrated the predic-
tive ability. Our proposed MRKNN algorithm can be regarded as a novel
and promising modeling technique for QSAR problems.
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